

APPLIED LEARNING STUDENT QUESTIONNAIRE: OVERALL ANALYSIS

Overall Results May 2016

Executive Summary

Participants and Methods

In May 2016, 343 students across 4 Race to the Top programs completed the Applied Learning Student Questionnaire (ALSQ). The response rates displayed in Table 1 suggest that 74% of the total number of participating students responded to the survey. The response rates per program ranged from 65% (Real STEM Georgia Southern) to 100% (STE(A)M Truck). Although there is no agreed-upon standard for a minimum response rate, Martella, Nelson, Morgan, and Marchand-Martella (2013)¹ suggest that a response rate of 50% is *adequate* for analysis and reporting, 60% is *good*, and 75% or higher is considered *very good*. Overall, the response rate achieved across 4 Innovation Fund programs is considered *good* for reporting and analysis.

Table 1. Survey Response Rates

Program	# of Survey Respondents	Total # of Participating Students	Survey Response Rate		
Real STEM Georgia Southern	212	328	65%		
STE(A)M Truck	50	50	100%		
Gwinnett Gear Up	72	75	96%		
Grady County Mechatronics	9	11	82%		
Total	343	464	74%		

Note. The number of participating students represent approximations and may not reflect recent changes to the participant population (e.g., dropouts). Survey respondents who did not follow instructions and/or completed less than 20% of the survey items were not included in this report.

The ALSQ² is designed to measure pre and post gains related to student problem solving and communication skills, self-management and engagement. The ALSQ is a self-report questionnaire that includes 36 items to assess students' attitudes on the following survey constructs:

- 1. Intrinsic Motivation: motivation stemming from goals of mastery, learning and challenge. Example, "It is important for me to learn what is being taught in this program."
- 2. Self-Management/Self-Regulation: effortful and persistent behaviors that are used to guide, monitor, and direct the success of one's learning and performance. Example, "I turn all my assignments in on time."
- **3.** Intent to Persist: aspirations, plans, and goals to pursue additional education and a career in STEM. Example, "I intend to get a college degree in STEM (Science, Technology, Engineering, and Math)."
- **4. Problem Solving:** inquiry-based learning environment that provides higher-order cognitive tasks and real-world applications. Example, "I work out explanations on my own."

June 2016

sengelman@sagefoxgroup.com

¹ Martella, R., Nelson, J., Morgan, R., & Marchand-Martella, N. (2013). *Understanding and Interpreting Education Research*. New York, NY: The Guilford Press.

² See Appendix A for information related to the construct reliabilities of the ALSQ. Prepared by

5. Implementation Activities: hands-on activities designed to increase exposure to STEM topics and real-world applications. Example, "We learn what scientists/technicians/engineers/ mathematicians or other STEM professionals do."

Results & Discussion

ALSQ Survey Constructs

Table 2 summarizes students' responses to the ALSQ survey constructs across all programs. In aggregate, students show statistically significant increases in *Intrinsic Motivation*, *Self-Management/Self-Regulation* skills, and *Intent to Persist*. In addition to assessing statistical significance from "before" to "now," effect sizes—a measure of the magnitude of an intervention on students' attitudes—were computed. Specifically, effect sizes were computed using Cohen's d and are intended to measure the practical importance of a significant finding.³ Cohen (1988) classified effect sizes as small, d=0.2; medium, d=0.5; and large, d=0.8.⁴ Table 2 suggests that medium effect sizes were found for *Intrinsic Motivation*, Self-*Management/Self-Regulation* skills, and *Intent to Persist*. Across all constructs, the largest effect size observed was for *Intrinsic Motivation* (d=0.79). This suggests that the programs were particularly effective at enhancing students' interests to learn and derive value from the material being taught. For example, AFTER participating in the programs, 73% of students said they prefer classwork that is challenging, compared to 48% before the program. See Table 4 for more information.

To maximize impact, we would expect students' average scores to exceed 4.00 on a 5-point Likert scale (1, *Strongly Disagree* to 5, *Strongly Agree*). In light of this benchmark, it is important to note that the "now" scores for one construct— *Intent to Persist*— did *not* reach or exceed the optimal average of 4.00. Figure 1 suggests that additional work may be needed in the above mentioned area.

	Ove	rall- Co	onstructs				
Constructs		n	Mean ¹		Paired Samples t-test ²	Effect Size (interpretation) ³	
Intrincia Mativation	Before	334	3	8.62	~ <0.001**	70 M	
	Now	334	4	.20	h<0.001.	.79	
Colf Monogoment/Colf Degulation	Before	334	3	.88	n<0.001**	EDM	
Sen-Management/Sen-Regulation	Now	334	4	.12	h<0.001	.55	
Intent to Deveist	Before	330	3	5.52	n <0 001**	⊢ aM	
intent to Persist	Now	330	3	.86	h<0.001.	.54	
Problem Solving	Now	336	4	.11	N/A	N/A	
Implementation Activities	Now	335	4	.17	N/A	N/A	

Table 2. Summary of Results by Constructs

Note. Scale; 1, *Strongly Disagree* to 5, *Strongly Agree*. ¹ Reference lines are set at 3.5 and 4. ²Please note that only students with matched Pre and Post data were assessed for significance. Desired statistically significant changes are highlighted in green. **p<0.001, *p<0.01, *p<0.05. Negatively worded statements were reverse coded for mean computations. ³Effect size (Cohen's *d*): Small (<.2); Medium (.2 to .8); Large (>.8). Small effect sizes are highlighted in light red; medium effect sizes are highlighted in dark orange; large effect sizes are highlighted in dark green.

³ To compute effect sizes, the formulas derived from Daniel & Kostic (2015) were utilized. Source: Daniel, T. & Kostic, B. (2015). *RStats effect size calculator*. Available online: http://www.missouristate.edu/rstats/Tables-and-Calculators.htm.

⁴ Cohen, J. (1988). *Statistical Power Analysis for the Behavioral Sciences* (2nd ed). Hillsdale, NJ: Lawrence Earlbaum Associates.

Note. **p<0.001, *p<0.01, †p<0.05; Scale is truncated for visual clarity.

• ALSQ Survey Constructs by Program

Examining the ALSQ results by individual program, it is evident that all of the programs show statistically significant increases in *Intrinsic Motivation, Self-Management/Self-Regulation* skills, and *Intent to Persist*. Examining effect sizes, all of the programs exhibit either medium or large effect sizes across all constructs. This suggests that the individual programs were *effective* at enhancing students' motivations to succeed, their ability to direct their own learning, and their intent to persist in STEM education and careers. While the effect sizes were consistently large (d>.8) across all constructs for the Grady County Mechatronics program, caution should be employed when interpreting the results given the small sample size (n=9).⁵

⁵ According to deWinter (2013), the t-test can be applied to a small sample size, as long as the effect size is expected to be large. Source: deWinter, J.C.F. (2013). Using the Student's t-test with extremely small sample sizes. *Practice Assessment, Research and Evaluation, 18 (10).* Available online: http://pareonline.net/getvn.asp?v=18&n=10.

Overall- Constructs per Program													
Constructs		Real STEM Georgia Southern (n=212)			STE(A)M Truck (n=50)			Gw	innett Gea (n=72)	r Up	Grady County Mechatronics (n=9)		
		Mean	t-test	Effect Size	Mean	t-test	Effect Size	Mean	t-test	Effect Size	Mean	t-test	Effect Size
Intrinsic Motivation	Before Now	3.65 4.28	p<0.001**	.81 ^L	3.88 4.15	p<0.001**	.58 ^M	3.34 4.01	p<0.001**	.88 ^L	3.51 4.24	p=0.015 ⁺	1.13 ^L
Self-Management/ Self-Regulation	Before Now	3.97 4.14	p<0.001**	.39 ^M	3.88 4.09	p=0.004*	.44 ^M	3.63 4.09	p<0.001**	1.03 ^L	3.91 4.13	p=0.045 ⁺	.87 ^L
Intent to Persist	Before Now	3.58 3.95	p<0.001**	.57 ^M	3.39 3.62	p=0.007*	.40 ^M	3.44 3.78	p<0.001**	.50 ^M	3.25 3.65	- p=0.025 ⁺	1.00 ^L
Problem Solving	Now	4.27			3.93			3.78			3.95		
Implementation Activities	Now	4.30	N/A	N/A	3.98	N/A ∂8	N/A	3.97	N/A	N/A	3.96	N/A	N/A

Table 3. Summary of Results by Constructs per Program

Note. Scale= 1, *Strongly Disagree* to 5, *Strongly Agree*. Desired statistically significant changes are highlighted in green and undesired statistically significant changes are highlighted in red. **p<0.001, *p<0.01, †p<0.05. Effect size (Cohen's d): Small (<.2); Medium (.2 to .8); Large (>.8). Small effect sizes are highlighted in light red; medium effect sizes are highlighted in dark orange; large effect sizes are highlighted in dark green.

In order for programs to maximize their effectiveness, we would expect "now" scores to reach or exceed the optimal average of 4.00 on a 5-point Likert scale (1, *Strongly Disagree* to 5, *Strongly Agree*). Figures 2 – 6 display "now" scores for each program and construct. For example, Figure 3 indicates that all of the programs met or exceeded the optimal average for *Self-Management/Self-Regulation*. In general, programs not reaching or exceeding the red horizontal line may need additional attention. For instance, 4 out of 4 programs did not reach the optimal average for *Intent to Persist* (Figure 4).

Scale= 1, Strongly Disagree to 5, Strongly Agree. Scale was truncated for visual clarity. Programs that met or exceeded the optimal average of 4.00 are reflected in green; programs that fell below the optimal average are reflected in red.

Scale= 1, *Strongly Disagree* to 5, *Strongly Agree*. Scale was truncated for visual clarity. Programs that met or exceeded the optimal average of 4.00 are reflected in green; programs that fell below the optimal average are reflected in red.

• Program Rating

Collapsing across all programs, students' ratings of their programs exceeded the optimal average of 4.00. On a 5-point Likert scale where 1 signifies *Very Poor* and 5 signifies *Excellent*, the average score was a 4.31. See Table 12. Looking at Figure 7, it is evident that all of the programs were rated above the optimal average. The high ratings for each of the programs speak to students' enjoyment.

• Areas for Further Improvement

Across all programs, further enhancing students' intentions to persist may be warranted. Likewise, students' ratings suggest that the inquiry-based learning environment may be improved by allowing students more opportunity to choose their own topics, work out explanations on their own, and interact with STEM professionals. Providing increased opportunities for interactions with STEM professionals and providing additional hands-on activities may enhance students' intentions to persist in STEM education and careers.

	Intrinsic Motivation		n	Mean ¹		Paired Samples t- test ²		1 (Strongly Disagree)	2 (Disagree)	3 (Neutral)	4 (Agree)	5 (Strongly Agree)
1.	I prefer class work that is	Before	329		3.40			5%	12%	35%	33%	15%
	things.	Now	329		3.94	p<0.001**		2%	4%	21%	43%	30%
2.	It is important to me to learn	Before	330		3.79	0.004**		2%	6%	27%	39%	25%
	what is being taught in this program.	Now	330		4.32	p<0.001**	11	1%	1%	11%	40%	47%
3.	I like what I am learning in this	Before	331		3.66	n<0.001**	10	4%	6%	33%	33%	24%
	program.	Now	331		4.17	p<0.001		2%	4%	16%	34%	45%
4.	I think I will be able to use what	Before	327		3.55	~ <0.001 **		4%	12%	32%	31%	21%
classes.	classes.	Now	327		4.17	p<0.001		1%	6%	15%	33%	46%
5.	Even when I do poorly on a test,	Before	332		3.89	n<0 001**	11	2%	5%	24%	39%	30%
	I try to learn from my mistakes.	Now	332		4.44	p<0.001				10%	35%	55%
6.	I think that what I am learning in	Before	329		3.56	~ <0.001 **	16	6%	8%	29%	38%	19%
	know.	Now	329		4.19	p<0.001***		2%	3%	14%	38%	43%
7.	I think that what we are learning	Before	329		3.61	n<0.001**		6%	9%	27%	33%	25%
	in this program is interesting.	Now	329		4.23	h<0.001		2%	2%	15%	33%	48%
8.	Understanding STEM (Science,	Before	330		3.54	0.004**		5%	11%	31%	31%	22%
	Nath) is important to me.	Now	330		4.20	p<0.001**		1%	5%	14%	34%	46%
9.	l enjoy STEM (Science,	Before	329		3.50			9%	9%	29%	29%	24%
	Technology, Engineering, and Math) in general	Now	329		4.19	p<0.001**		2%	4%	16%	31%	48%

Table 4. Intrinsic Motivation

Math) in general. Now 329 4.19 4.19 2.0 4.0 100 310 4870 4870 4870 100 3170 4870 4870 100 3170 4870 4870 100 3170 4870 4870 100 3170 4870 4870 100 3170 100 3170 1

Table 5. Self-Management/Self-Regula	ition										
Self-Management/Self- Regulation		n	Mean ¹		Paired Samples t- test ²		1 (Strongly Disagree)	2 (Disagree)	3 (Neutral)	4 (Agree)	5 (Strongly Agree)
10. I turn all my assignments in	Before	330		3.62	n<0.001**		4%	12%	29%	29%	26%
on time.	Now	330		3.94	h<0.001	111	3%	4%	25%	34%	35%
11 I miss class often (n)	Before	331			h.	59%	22%	11%	5%	4%	
	Now	331		1.74	p=0.780	h	61%	21%	8%	4%	6%
12 Lamoften late for class (n)	Before	328		1.67	p=0.385	I	63%	20%	9%	5%	4%
12. Talli Olleli iale for class. (ii)	Now	328		1.71		I.	65%	17%	7%	6%	6%
13. I set aside time to do my	Before	330		3.22	n<0.001**		8%	16%	36%	28%	12%
homework and study.	Now	330		3.68	p<0.001**		5%	7%	29%	35%	24%
14. When I say I'm going to do	Before	330		3.78			2%	7%	29%	35%	27%
something, I do it.	Now	330		4.13	p<0.001		1%	2%	18%	42%	37%
	Before	330		4.05			1%	4%	19%	40%	35%
15. Tam a hard worker.	Now	330		4.36	p<0.001**			1%	10%	39%	49%
16. I finish whatever I begin.	Before	330		3.87			1%	6%	29%	32%	32%
	Now	330		4.19	p<0.001**		1%	2%	20%	34%	44%

Note. ¹Reference lines are set at 3.5 and 4. ²Please note that only students with matched Pre and Post data were assessed for significance. Desired statistically significant changes are highlighted in green and undesired statistically significant changes are highlighted in red. **p<0.001, *p<0.05; (n) negatively worded statement.

Table 6. Intent to Persist

Intent to Persist		n	Mean ¹		Paired Samples t-test ²		1 (Strongly Disagree)	2 (Disagree)	3 (Neutral)	4 (Agree)	5 (Strongly Agree)
17. I am considering a career in STEM (Science, Technology)	Before	330		3.18	n<0.001**	1	11%	17%	34%	19%	19%
Engineering, and Math).	Now	330		3.58	p<0.001	1	9%	11%	25%	24%	31%
18. I intend to get a college degree in STEM (Science,	Before	329		3.16	16 55 P<0.001**	12%	16%	33%	21%	17%	
Technology, Engineering, andMath).	Now	329		3.55			8%	12%	27%	24%	30%
19. I can see myself working in	Before	329		3.25	p<0.001**	10	10%	16%	32%	24%	18%
Engineering, and Math).	Now	329	+I	3.68			7%	9%	24%	28%	32%
20. Someday, I would like to have a career in STEM (Science,	Before	328		3.20	n-0 001**	1	12%	16%	32%	19%	20%
Technology, Engineering, andMath).	Now	328		3.63	p<0.001	1.1	8%	9%	28%	22%	33%
21. I intend to graduate from	Before	328		4.83	a 0.001]	1%	1%	2%	8%	89%
high school.	Now	328		4.88	p=0.081	 	1%		1%	5%	93%

Note. ¹ Reference lines are set at 3.5 and 4. ²Please note that only students with matched Pre and Post data were assessed for significance. Desired statistically significant changes are highlighted in green and undesired statistically significant changes are highlighted in red. **p<0.001, *p<0.05.

Table 7. Problem Solving, Now Only

Problem Solving	n	Mean ¹		Assessment		1 (Strongly Disagree)	2 (Disagree)	3 (Neutral)	4 (Agree)	5 (Strongly Agree)
 In this program, my teacher(s) tells me how to improve my work. 	335	++	4.24	Good 😳	11	1%	2%	14%	36%	47%
 In this program, my teacher(s) lets us choose our own topics or projects to investigate. 	334		3.61	Attention ✓	11	6%	11%	25%	32%	26%
 In this program, I work out explanations on my own. 	336		3.85	Attention 🗸		1%	4%	26%	47%	22%
25. In this program, I have opportunities to explain my ideas.	335		4.09	Good ©	11	1%	4%	16%	43%	36%
 In this program, we plan and do our own projects and/or experiments. 	336		3.93	Attention ✓	11	2%	7%	21%	35%	35%
27. In this program, we work on real-world problems.	335		4.08	Good 😊	11	1%	5%	17%	36%	40%
 In this program, we have class discussions. 	334		4.20	Good 😊	•11	1%	2%	13%	41%	42%
 In this program, we investigate to see if our ideas are right. 	336		4.25	Good 😳	•11	1%	1%	14%	43%	42%
30. In this program, we need to be able to think and ask questions.	331		4.46	Good 😊	- II	1%		7%	37%	56%
 In this program, we are expected to understand and explain ideas. 	333		4.36	Good ©	11	1%	1%	9%	41%	49%

Note. ¹Reference lines are set at 3.5 and 4. Assessment: Good=Above 4.0; Attention=Below 4.0; Action=Below 3.5.

Implementation Activities	n	Mean ¹		Assessment		1 (Strongly Disagree)	2 (Disagree)	3 (Neutral)	4 (Agree)	5 (Strongly Agree)
32. In this program, my teacher(s) takes notice of students' ideas.	335		4.09	Good 😊	11	3%	3%	17%	35%	42%
33. In this program, my teacher(s) shows us how new information relates to what we have already learned.	334	+	4.30	Good ©	11		1%	11%	42%	45%
34. In this program, we learn what scientists/ technicians/ engineers/ mathematicians or other STEM professionals do.	334	+	4.16	Good ©	11	2%	2%	14%	43%	40%
 In this program, we do our work in groups. 	335		4.37	Good 😊	I			13%	36%	51%
36. In this program, we interact with scientists/ technicians/ engineers/ mathematicians or other STEM professionals.	334		3.94	Attention ✓	111	2%	6%	23%	35%	34%

Table 8. Implementation Activities, Now Only

Note. ¹Reference lines are set at 3.5 and 4. Assessment: Good=Above 4.0; Attention=Below 4.0; Action=Below 3.5.

Table 9. Educational Plans						
What is the highest level of education you plan	Bef	ore	N	ow	Cl	hange ¹
to achieve?	n	%	n	%	n	%
High School	36	11%	21	6%	-15	-5%
2-year college	34	10%	16	5%	-18	-6%
4-year college	102	31%	71	22%	-31	-9%
Graduate School	93	28%	100	31%	+7	+2%
Professional School	62	19%	119	36%	+57	+17%
Total	327	100%	327	100%		
Average ²	3.	15	3.	49	p<0.001*	*(significant) ³

Note. ¹Change from Before to Now. Increases are highlighted in green; decreases are highlighted in red.

²To compute averages, the following codes were applied: High School (1), 2-year college (2), 4-year college (3), Graduate School (4), Professional School (4). ³Paired samples t-test, p-value: **p<0.001, *p<0.01, †p<0.05.

Table 10. Demographics					
Gender		n		%	
Female		137		41%	
Male		195		59%	
Total		332		100%	
Ethnicity	n	%	Grade	n	%
Asian	16	5%	6 th	2	1%
Black	115	35%	7 th	50	15%
Hispanic	68	20%	8 th	142	43%
Native American	3	1%	9 th	20	6%
White	102	31%	10 th	7	2%
Multiracial	16	5%	11 th	49	15%
Other	12	4%	12 th	63	19%
Total	332	100%	Other	1	<1%
			Total	334	100%

Table 11. Participation

How long have y	ou participated in this program?	n	%
	0 semesters	2	1%
	1 semester	95	29%
	2 semesters	198	59%
Decage	3 semesters	9	3%
Dosage	4 or more semesters	14	4%
	Summer Only	1	<1%
	Don't Know	13	4%
	Total	332	100%
Did you particip	ate in this program during the sumr	mer? n	%
	No	313	94%
Summer	Yes	11	3%
Participation	Don't Know	9	3%
	Total	333	100%

Table 12. Program Rating

Program Rating: How would you rate this program?	n	Mean ¹	Assessment	1 (Very Poor)	2 (Poor)	3 (Average)	4 (Good)	5 (Excellent)
	333	4.31	Good 😊	 1%	1%	15%	32%	51%

Note. ¹Reference lines are set at 3.5 and 4. Assessment: Good=Above 4.0; Attention=Below 4.0; Action=Below 3.5.

Appendix A. Construct Reliabilities

Constructs		Cronbach's alpha	Reliability Interpretation
Intrinsic Motivation (9-items)	Before	0.895	Very good
	Now	0.891	Very good
Self-Management/Self-Regulation (7-items)	Before	0.729	Good
	Now	0.714	Good
Intent to Persist (5-items)	Before	0.894	Very good
	Now	0.904	Excellent
Problem Solving (10-items)	Now	0.878	Very good
Implementation Activities (5-items)	Now	0.784	Good

Table A1. Construct Reliabilities (Omnibus, May 2016)

Cronbach's Alpha Reliability Key: Cronbach's alpha is a measure of the internal consistency of items in a construct. This statistic ranges from 0 to 1.00; the higher the value the better. An alpha of .80 or higher is considered to have achieved very good measurement reliability; an alpha of .65 is considered acceptable (Field, 2009).

Reliability	Interpretation
.90 and above	Excellent reliability; at the level of the best measures
.8090	Very good
.7080	Good; in the range of most. There are probably a few items which could be improved.
.6070	Somewhat low. This measure needs to be supplemented by other measures (e.g., more surveys) to determine outcomes. There are probably some items which could be improved.
.5060	Suggests need for revision of measure, unless it is quite short (ten or fewer items). The test definitely needs to be supplemented by other measures (e.g., more tests).
.50 or below	Questionable reliability. This measure should not contribute heavily to the outcomes and needs revision.

From: J. C. Nunnally, Psychometric Theory. New York: McGraw-Hill, 1967, pp. 172-235.

Reference:

Field, A. (2009). *Discovering Statistics Using SPSS, 3rd Edition*. Thousand Oaks, CA: Sage Publications.