

APPLIED LEARNING STUDENT QUESTIONNAIRE: OVERALL ANALYSIS

Overall Results 2013-2014

Executive Summary

Participants and Methods

Table 1. Survey Response Rates

In 2013-2014, 2,931 students across 10 Race to the Top programs completed the Applied Learning Student Questionnaire (ALSQ).¹ The response rates displayed in Table 1 suggest that 78% of the total number of participating students were successfully surveyed across all programs. The response rate ranged from 47% to 100%. Although there is no agreed-upon standard for a minimum response rate, Martella, Nelson, Morgan, and Marchand-Martella (2013)² suggest that a response rate of 50% is *adequate* for analysis and reporting, 60% is *good*, and 75% or higher is considered *very good*. Overall, the response rate achieved across 10 Race to the Top programs is considered *very good* for reporting and analysis.

Drogram	# of Survey	Total # of Participating	Survey
Program	Respondents	Students ¹	Response Rate
STEM for Life Carroll County	370	480	77%
Drew Charter School- Partners of Innovation	692	841	82%
Murray County STEM Academy	117	150	78%
21 st Century STEM Collaboration- Barrow County	780	895	87%
STEM Targeted Education Program (STEP)	247	270	200/
Academy- Sweetwater MS and Moore MS	247	278	89%
Tift County Mechatronics Program	133	135	99%
21st Century Academy of Environmental Studies	240	E 0 1	60%
– Rockdale County	540	201	00%
Computational Thinking: 21st Century STEM	115	246	470/
Problem-Solving Skills for Georgia Students	115	240	47%
Real STEM – Georgia Southern	86	131	66%
Morehouse College	43	43	100%
Total	2,931	3,780	78%

Note. ¹Total # of participating students does not count unique students; students may have completed both the Fall and Spring surveys and, thus, be counted twice in the dataset.

² Martella, R., Nelson, J., Morgan, R., Marchand-Martella, N (2013). *Understanding and Interpreting Education Research*. New York, NY: The Guilford Press.

Prepared by

October 2014

tmcklin@sagefoxgroup.com

¹ The current report assesses students' responses across Fall 2013, Spring 2014, and Summer 2014. Students may have participated in more than one survey; thus, total student figures may not be of unique students.

The ALSQ³ is designed to measure pre and post gains related to student problem solving and communication skills, self-management and engagement. The ALSQ is a self-report questionnaire that includes 36 items to assess students' attitudes on the following constructs:

- **1. Intrinsic Motivation**: motivation stemming from goals of mastery, learning and challenge. Example, "It is important for me to learn what is being taught in this program."
- 2. Self-Management/Self-Regulation: effortful and persistent behaviors that are used to guide, monitor, and direct the success of one's learning and performance. Example, "I turn all my assignments in on time."
- **3.** Intent to Persist: aspirations, plans, and goals to pursue additional education and a career in STEM. Example, "I intend to get a college degree in STEM (Science, Technology, Engineering, and Math)."
- **4. Problem Solving:** inquiry-based learning environment that provides higher-order cognitive tasks and real-world applications. Example, "I work out explanations on my own."
- 5. Implementation Activities: hands-on activities designed to increase exposure to STEM topics and real-world applications. Example, "We learn what scientists/technicians/engineers/ mathematicians or other STEM professionals do."

Results & Discussion

ALSQ Survey Constructs

Table 2 summarizes students' responses to the ALSQ survey constructs across all programs and semesters. In aggregate, students show statistically significant increases in *Intrinsic Motivation*, *Self-Management/Self-Regulation Skills*, and *Intent to Persist*. The largest student gains observed were in the *Intrinsic Motivation* construct. This suggests that the programs were particularly effective at enhancing students' interests to learn and derive value from the material being taught. For example, prior to participating in the programs, only 56% of students said that understanding STEM is important to them compared to 76% after the program. See Appendix A for more information.

To maximize impact, we would expect students' average scores to exceed 4.00 on a 5-point Likert scale (1, *Strongly Disagree* to 5, *Strongly Agree*). In light of this benchmark, it is important to note that the "now" scores across the following three constructs— *Intent to Persist, Problem Solving,* and *Implementation Activities*— did not reach or exceed the optimal average of 4.00. Figure 1 suggests that additional work may be needed in the above mentioned areas.

³ See Appendix B for information related to the construct reliabilities of the ALSQ.

Overall- Constructs									
Constructs		n	Mean ¹		Paired Samples t-test ²				
Intrinsic Motivation	Before	2926		3.61	p<0.001**				
	Now	2905		4.09	p<0.001				
Self-Management/Self-	Before	2923		3.87	nc0 001**				
Regulation	Now	2908		4.08	p<0.001				
Intent to Dorsist	Before	2922		3.47	nc0 001**				
	Now	2915		3.74	p<0.001				
Problem Solving	Now	2910		3.95	n/a				
Implementation Activities	Now	2888		3.85	n/a				

Table 2. Summary of Results by Constructs

Note. Scale= 1, *Strongly Disagree* to 5, *Strongly Agree*. ¹Reference lines are set at 3.5 and 4. ²Please note that only students with matched Pre and Post data were assessed for significance. Desired statistically significant changes are highlighted in green and undesired statistically significant changes are highlighted in red. **p<0.001, *p<0.01, †p<0.05. Negatively worded statements were reverse coded for mean computations.

Figure 1. Constructs

**p<0.001, *p<0.01, †p<0.05; Scale is truncated for visual clarity.

• ALSQ Survey Constructs by Program

Disaggregating the results by program, Table 3 suggests that students show statistically significant increases in *Intrinsic Motivation, Self-Management/Self-Regulation Skills*, and *Intent to Persist* across all programs, with the exception of the students in the Murray STEM Academy. Students in the RT3 Computational Thinking program only show a statistically significant increase in *Intrinsic Motivation*. Students in the Mechatronics Program at Tift County show the largest increases from before to now on all three of the abovementioned constructs; RT3 Computational Thinking and Murray STEM Academy students show the smallest average increases across all 10 programs.

Table 3. Summary of Results by Constructs per Program

		-		Over	all- Construe	ts per Prog	ram					
Constructs		STEM for Life Carroll County (n=370)		Drew Charter (n=692)		Murray STEM Academy (n=117)		21 st Century Barrow County (n=780)		STEP Academy Moore MS Sweetwater MS (n=247)		
		Mean	t-test	Mean	t-test	Mean	t-test	Mean	t-test	Mean	t-test	
Intrinsic Motivation	Before Now	3.48 4.06	p<0.001**	3.60 3.93	p<0.001**	3.22 3.49	p=0.059	3.64 4.18	p<0.001**	3.52 4.09	p<0.001**	
Self-Management/	Before	3.73		3.82	p<0.001**	3.51		4.01		3.67		
Self-Regulation	Now	4.07	p<0.001**	3.96		3.57	p=0.822	4.20	p<0.001**	3.96	p<0.001**	
Intent to Persist	Before	3.36	n<0 001**	3.43	n<0.001**	3.00	n=0 311	3.40	n<0.001**	3.42	n<0.001**	
	Now	3.74	p<0.001	3.60	p<0.001	3.15	ρ=0.511	3.66	p<0.001	3.76	p<0.001	
Problem Solving	Now	3.86	-	3.85		3.40		4.10		3.78		
Implementation Activities	Now	3.79	- 11/0	3.71	n/a 3.71		- n/a	4.07	- 1/0	3.68	- n/a	

Note. Scale= 1, Strongly Disagree to 5, Strongly Agree. Negatively worded statements were reverse coded for mean computations. **p<0.001, *p<0.05

				Overall	- Constructs pe	r Program						
Constructs		Tift Co Mechatroni	unty cs (n=133)	21 st Century Rockdale County (n=347)		RT3 Computational Thinking(n=115)		Real STEM Georgia Southern (n=86)		Morehouse College (n=43)		
constructs		Mean	t-test	Mean	t-test	Mean	t-test	Mean	t-test	Mean	t-test	
Intrincic Mativation	Before	3.86	n <0 001**	3.83		3.60	-0.020t	3.50	~ <0.001**	3.87	∽<0.001**	
	Now	4.65	p<0.001***	4.27	p<0.001	3.75	p=0.0391	4.05	p<0.001***	4.35	μ<0.001	
Self-Management/	Before	4.01	4.04 p<0.001**	n<0.001**	3.76	n=0.055	3.89	n=0.001*	3.95	p<0.001**		
Self-Regulation	Now	4.43	p<0.001	4.23	p (0.001	3.84	p=0.055	4.02	p=0.001	4.32	p.0.001	
Intent to Develot	Before	3.73	-	3.78		3.60	- 0 1 5 1	3.39		4.13	0.007*	
Intent to Persist	Now	4.61	p<0.001***	4.00	p<0.001**	3.70	p=0.151	3.70	p<0.001***	4.44	p=0.007*	
Problem Solving	Now	4.55		3.92		3.63		4.22		4.29		
Implementation Activities	Now	4.59	- n/a	3.75	- n/a	3.55			- n/a	4.10	- n/a	

Continued Table 3. Summary of Results by Constructs per Program

Note. Scale= 1, Strongly Disagree to 5, Strongly Agree. Negatively worded statements were reverse coded for mean computations. **p<0.001, *p<0.05

In order for programs to maximize their impact on students, we would expect "now" scores to reach or exceed the optimal average of 4.0. Figures 2 – 6 display "now" scores for each program and construct. For example, Figure 2 indicates that seven out of 10 programs met or exceeded the optimal average for intrinsic motivation; three out of 10 programs—Drew Charter, Murray STEM Academy, and RT3 Computational Thinking— fell below the optimal average. In general, programs not reaching or exceeding the red horizontal line may need additional support and attention.

Scale= 1, Strongly Disagree to 5, Strongly Agree. Scale was truncated for visual clarity. Program Rating Scale= 1, Very Poor to 5, Excellent.

Scale= 1, Strongly Disagree to 5, Strongly Agree. Scale was truncated for visual clarity. Program Rating Scale= 1, Very Poor to 5, Excellent.

• Program Rating

Collapsing across all programs, students' ratings exceeded the optimal average of 4.00. On a 5-point Likert scale where 1 signifies *Very Poor* and 5 signifies *Excellent*, the average score was a 4.11. See Table 12 for more information. Looking at Figure 7, above, we see that seven out of 10 programs were rated highly by students (i.e., above the optimal average). However, Drew Charter, Murray County STEM Academy, and RT3 Computational Thinking may need additional assistance in improving student enjoyment.

• Areas for Further Improvement

Across all programs, further enhancing problem solving, implementation activities, and students' intentions to persist may be warranted. Specifically, students' ratings suggest that the inquiry-based learning environment may be improved by allowing students more opportunity to choose their own topics, work out explanations on their own, and plan and conduct their own projects. Likewise, encouraging programs to provide activities that foster interaction with STEM professionals may increase student exposure to real-world applications and careers. Such implementation activities may strengthen students' intentions and motivations to pursue educational and career opportunities in STEM fields. Moreover, providing targeted support to the three programs—Drew Charter, Murray STEM Academy, and RT3 Computational Thinking— that did not reach the optimal average across most survey constructs may be needed to strengthen the overall efficacy of the Race to the Top grant(s) in Georgia.

Table 4. Intrinsic Motivation

	Intrinsic Motivation		n	Mean ¹		Paired Samples t-test		1 (Strongly Disagree)	2 (Disagree)	3 (Neutral)	4 (Agree)	5 (Strongly Agree)
1.	I prefer class work that is	Before	2926		3.30			7%	14%	37%	27%	16%
_	new things.	Now	2905		3.83	p<0.001		4%	5%	25%	37%	29%
2.	It is important to me to learn	Before	2918	<u> </u>	3.86	~ <0.001**	11	3%	6%	25%	36%	31%
	program.	Now	2892		4.28	p<0.001		2%	2%	13%	34%	50%
3.	I like what I am learning in	Before	2909		3.58		11.	4%	8%	34%	34%	20%
	this program.	Now	2885		4.06	p<0.001	11	3%	3%	19%	35%	40%
4.	I think I will be able to use	Before	2899		3.59	**		4%	10%	30%	34%	22%
	in other classes.	Now	2883		4.11	p<0.001	11	3%	3%	17%	35%	42%
5.	Even when I do poorly on a	Before	2916		3.94	**	11	4%	5%	20%	35%	35%
	test, i try to learn from my mistakes.	Now	2894		4.35	p<0.001		2%	2%	10%	32%	54%
6.	I think that what I am	Before	2899		3.67	· · · · · **	111	4%	7%	31%	33%	25%
	useful for me to know.	Now	2875		4.13	p<0.001		3%	3%	16%	33%	45%
7.	I think that what we are	Before	2895		3.45	· · · · · **		6%	11%	35%	29%	19%
	interesting.	Now	2888		3.95	p<0.001	11	3%	6%	20%	33%	37%
8.	Understanding STEM	Before	2915		3.62			6%	8%	30%	30%	26%
	(Science, Technology, Engineering, and Math) is					p<0.001 ^{**}		22(22(470/	224	
	important to me.	Now	2900		4.10		11	3%	3%	17%	32%	44%
9.	I enjoy STEM (Science,	Before	2910		3.50	n<0.001**		7%	10%	33%	27%	23%
	and Math) in general.	Now	2894		3.95	h<0.001		4%	5%	21%	30%	39%

Note. ¹ Reference lines are set at 3.5 and 4. ²Please note that only students with matched Pre and Post data were assessed for significance. Desired statistically significant changes are highlighted in green and undesired statistically significant changes are highlighted in red. **p<0.001, *p<0.05. Highest percentages are highlighted in gray.

Self-Regulation/Self-Motivation		n	Mean ¹		Paired Samples t-test		1 (Strongly Disagree)	2 (Disagree)	3 (Neutral)	4 (Agree)	5 (Strongly Agree)
10. I turn all my assignments in	Before	2923		3.60	n<0.001**	111	3%	11%	31%	31%	23%
on time.	Now	2900		3.88	h<0.001	11	2%	6%	25%	35%	31%
11 Limiss class often (n)	Before	2902		1.68	n = 0.252	.	63%	19%	11%	5%	3%
	Now	2895		1.66	p=0.233	.	66%	16%	8%	6%	4%
12. I am often late for class. (n)	Before	2875		1.73	n-0.982	h.	59%	21%	12%	5%	3%
	Now	2868		1.73	p=0.302	.	61%	19%	10%	6%	4%
13. I set aside time to do my	Before	2913		3.37	p<0.001**	116	7%	11%	34%	30%	16%
homework and study.	Now	2898		3.72		111	5%	6%	28%	34%	27%
14. When I say I'm going to do	Before	2918		3.75	n<0.001**	11ı	3%	6%	31%	35%	26%
something, I do it.	Now	2908		4.04	p<0.001		2%	3%	22%	36%	37%
15 Jama hard worker	Before	2908		3.98	n<0.001**	11	2%	4%	22%	35%	36%
15. I am a hard worker.	Now	2895		4.24	p<0.001		2%	2%	15%	32%	49%
16. I finish whatever I begin.	Before	2901		3.78	n<0.001**	111	2%	6%	30%	33%	28%
	Now	2908		4.07	h<0.001		2%	3%	21%	36%	38%

Note. ¹ Reference lines are set at 3.5 and 4. ²Please note that only students with matched Pre and Post data were assessed for significance. Desired statistically significant changes are highlighted in green and undesired statistically significant changes are highlighted in gray.

Table 6. Intent to Persist

Intent to Persist		n	Mean ¹		Paired Samples t-test		1 (Strongly Disagree)	2 (Disagree)	3 (Neutral)	4 (Agree)	5 (Strongly Agree)
17. I am considering a career in	Before	2922		3.13	0.001**		15%	17%	29%	19%	20%
Engineering, and Math).	Now	2915		3.48	p<0.001		12%	12%	25%	21%	31%
18. I intend to get a college degree in STEM (Science,	Before	2914		3.26	· · · · · **	10	12%	15%	30%	21%	22%
Technology, Engineering, and Math).	Now	2908		3.57	p<0.001		9%	11%	25%	22%	32%
19. I can see myself working in	Before	2913		3.16	**		14%	16%	30%	20%	20%
STEM (Science, Technology, Engineering, and Math).	Now	2906		3.48	p<0.001		11%	12%	24%	23%	30%
20. Someday, I would like to have a career in STEM	Before	2915		3.14	**	lu	15%	15%	30%	20%	20%
(Science, Technology, Engineering, and Math).	Now	2887		3.46	p<0.001		11%	12%	25%	22%	30%
21. I intend to graduate from	Before	2910		4.64			2%	1%	7%	9%	80%
high school.	Now	2907		4.73	p<0.001		2%	1%	5%	7%	85%

Note. ¹ Reference lines are set at 3.5 and 4. ²Please note that only students with matched Pre and Post data were assessed for significance. Desired statistically significant changes are highlighted in green and undesired statistically significant changes are highlighted in red. **p<0.001, *p<0.05. Highest percentages are highlighted in gray.

Table 7. Problem Solving, Now Only

Problem Solving	n	Mean	Assessment		1 (Strongly Disagree)	2 (Disagree)	3 (Neutral)	4 (Agree)	5 (Strongly Agree)
 In this program, my teacher(s) tells me how to improve my work. 	2878	4.0	3 Good ©	11	3%	3%	17%	35%	41%
23. In this program, my teacher(s) lets us choose our own topics or projects to investigate.	2844	 3.4	3 Action !	10	7%	10%	33%	27%	23%
 In this program, I work out explanations on my own. 	2910	3 .7	5 Attention ✓	16	2%	4%	32%	42%	21%
25. In this program, I have opportunities to explain my ideas.	2898	3.8	3 Attention ✓		3%	5%	23%	41%	28%
26. In this program, we plan and do our own projects and/or experiments.	2895	 3.7	3 Attention ✓	10	4%	8%	27%	34%	27%
27. In this program, we work on real-world problems.	2903	3 .9	3 Attention 🗸	11	3%	4%	23%	36%	34%
28. In this program, we have class discussions.	2897	4.1	5 Good 😊	1	2%	3%	16%	35%	44%
29. In this program, we investigate to see if our ideas are right.	2887	4.0	2 Good 😳	II	2%	3%	20%	39%	35%
30. In this program, we need to be able to think and ask questions.	2894	4.2	2 Good ©	1	2%	2%	15%	36%	46%
 In this program, we are expected to understand and explain ideas. 	2901	4.2) Good 😊	11	2%	2%	15%	38%	44%

Note. ¹Reference lines are set at 3.5 and 4. Assessment: Good=Above 4.0; Attention=Below 4.0; Action=Below 3.5. Highest percentages are highlighted in gray.

Implementation Activities	n	Mean		Assessment		1 (Strongly Disagree)	2 (Disagree)	3 (Neutral)	4 (Agree)	5 (Strongly Agree)
32. In this program, my teacher(s) takes notice of students' ideas.	2868		3.85	Attention 🗸	111	4%	5%	23%	35%	32%
33. In this program, my teacher(s) shows us how new information relates to what we have already learned.	2829		4.09	Good ©	11	3%	3%	17%	38%	40%
34. In this program, we learn what scientists/ technicians/ engineers/ mathematicians or other STEM professionals do.	2887		3.78	Attention ✓	11	4%	7%	24%	35%	29%
 In this program, we do our work in groups. 	2888		3.82	Attention 🗸	111	2%	4%	30%	36%	27%
36. In this program, we interact with scientists/ technicians/ engineers/ mathematicians or other STEM professionals.	2881		3.71	Attention ✓	11	5%	8%	25%	33%	28%

Table 8. Implementation Activities, Now Only

Note. ¹Reference lines are set at 3.5 and 4. Assessment: Good=Above 4.0; Attention=Below 4.0; Action=Below 3.5. Highest percentages are highlighted in gray.

Table 9. Educational Plans							
What is the highest level of education you plan	Bef	ore	No	w	Change ¹		
to achieve?	n	%	n	%	n	%	
High School	423	15%	218	8%	-205	-7%	
2-year college	348	12%	251	9%	-97	-3%	
4-year college	808	29%	592	21%	-216	-8%	
Graduate School	615	22%	724	26%	+109	+4%	
Professional School	593	21%	988	36%	+395	+14%	
Total	2788	100%	2773	100%			
Average ²	3.0	01	3.	37	p<0.001**	* (significant) ³	

Note. ¹Change from Before to Now. Increases are highlighted in green; decreases are highlighted in red.

²To compute averages, the following codes were applied: High School (1), 2-year college (2), 4-year college (3), Graduate School (4), Professional School (4). ³Only students with matched Pre and Post data were assessed for significance. Paired samples t-test, p-value: **p<0.001, *p<0.01, †p<0.05

Table 10. Demographics							
Gender		n		%			
Female		1352		47%			
Male		1523 53%					
Total		2875		100%			
Ethnicity	n	%	Grade	n	%		
Asian	105	4%	6 th	562	19%		
Black	1168	41%	7 th	628	22%		
Hispanic	223	8%	8 th	525	18%		
Native American	29	1%	9 th	236	8%		
White	1048	36%	10 th	209	7%		
Multiracial	215	7%	11 th	301	10%		
Other	91	3%	12 th	394	14%		
Total	2879	100%	Other	31	1%		
			Total	2886	100%		

Table 11. Participation

How long have y	n	%		
	0 semesters	80	3%	
Dosage	1 semester	1051	37%	
	2 semesters	745	26%	
	3 semesters	145	5%	
	4 or more semesters	439	15%	
	Summer Only	49	2%	
	Don't Know	367	13%	
	Total	2876	100%	
Did you participate in this program during the summer?		mer? n	%	
	No	2044	71%	
Summer	Yes	533	19%	
Participation	Don't Know	294	10%	
	Total	2872	100%	

Table 12. Program Rating

Program Rating: How would you	n	Mean ¹	Assessment		Very Poor (1)	Poor (2)	Average (3)	Good (4)	Excellent (5)	
rate this program?	2874		4.11	Good 😊	<u> </u>	3%	2%	17%	36%	42%

Note. ¹ Reference lines are set at 3.5 and 4. Assessment: Good=Above 4.0; Attention=Below 4.0; Action=Below 3.5. Highest percentage is highlighted in gray.

Construct Reliabilities						
Constructs		n	Cronbach's alpha	Reliability Interpretation		
Intrinsic Mativation (9-itoms)	Before	4502	.877	Very Good		
	Now	4428	.896	Very Good		
Self Management (Self Regulation (7. items)	Before	4588	.603	Somewhat Low		
Sen-Management/Sen-Kegulation (7-items)	Now	4535	.625	Somewhat Low		
Intent to Percist (5-items)	Before	4638	.870	Very Good		
	Now	4587	.883	Very Good		
Problem Solving (10-items)	Now	4543	.884	Very Good		
Implementation Activities (5-items)	Now	4614	.809	Very Good		

Appendix B. Construct Reliabilities

Note. Construct reliabilities were computed based on December 2012 – July 2014 data.

Cronbach's Alpha Reliability Key: Cronbach's alpha is a measure of the internal consistency of items in a construct. This statistic ranges from 0 to 1.00; the higher the value the better. An alpha of .80 or higher is considered to have achieved *very good* measurement reliability; an alpha of .65 is considered acceptable (Field, 2009). The table above suggests that all constructs achieved very good measurement reliability with the exception of Self-Management/Self-Regulation.

Reliability	Interpretation
.90 and above	Excellent reliability; at the level of the best measures.
.8090	Very good.
.7080	Good; in the range of most. There are probably a few items which could be improved.
.6070	Somewhat low. This measure needs to be supplemented by other measures (e.g., more surveys) to determine outcomes. There are probably some items which could be improved65 is considered acceptable.
.5060	Suggests need for revision of measure, unless it is quite short (ten or fewer items). The test definitely needs to be supplemented by other measures (e.g., more tests).
.50 or below	Questionable reliability. This measure should not contribute heavily to the outcomes and needs revision.

From: J. C. Nunnally, Psychometric Theory. New York: McGraw-Hill, 1967, pp. 172-235.

Reference:

Field, A. (2009). *Discovering Statistics Using SPSS, 3rd Edition*. Thousand Oaks, CA: Sage Publications.